This chapter was originally published in the book *Advances in Botanical Research, Vol. 58*, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial

© Copyright 2011 Elsevier Ltd. Academic Press.
Carotenoids

ABBY J. CUTTRISS,*† CHRISTOPHER I. CAZZONELLI,‡ ELEANORE T. WURTZEL† AND BARRY J. POGSON†‡

*Molecular Biosciences and Bioengineering, University of Hawai‘i at Mānoa, Honolulu, HI, USA
†Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York, USA
‡ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia

I. Biological Function .. 3
 A. Dietary Carotenoids .. 3
 B. Carotenoids in Photosynthetic Organisms ... 4
II. Distribution ... 6
III. Carotenoid Biosynthesis .. 7
 A. Isoprenoid Precursors ... 7
 B. Carotene Synthesis .. 8
 C. Xanthophyll Synthesis ... 11
 D. Cleavage Products .. 13
IV. Regulation of Carotenoid Biosynthesis ... 17
 A. Transcriptional Regulation ... 17
 B. Metabolite Feedback ... 20
 C. Catabolism ... 20
 D. Storage Capacity ... 21
V. Nutrition ... 21
 A. Rice ... 21
 B. Maize ... 22

†Corresponding author: E-mail: barry.pogson@anu.edu.au
ABSTRACT

Carotenoid pigments provide fruits and flowers with distinctive red, orange and yellow colours as well as a number of aromas, which make them commercially important in agriculture, food, health and the cosmetic industries. Carotenoids comprise a large family of C_{40} polyenes that are critical for the survival of plants and animals alike. β-carotene and its derivatives contain unmodified β-ionone groups, which serve as precursors for vitamin A and are therefore essential dietary components for mammals. Significant progress has been made towards producing staple food crops with elevated provitamin A carotenoids, an important first step in alleviating worldwide vitamin A deficiency. Recent insights into the regulatory processes that control carotenoid composition and content may further advance biofortification projects.

ABBREVIATIONS

βLCY lycopene β-cyclase
εLCY lycopene ε-cyclase
βOH β-hydroxylase
εOH ε-hydroxylase
ABA abscisic acid
CCD carotenoid cleavage dioxygenases
CRTISO carotenoid isomerase
CsZCD crocus zeaxanthin 7,8(7',8')-cleavage dioxygenase
DMAPP dimethylallyl diphosphate
DXP deoxy-3'-xylulose 5-phosphate
DXS deoxy-3'-xylulose 5-phosphate synthase
GGPP geranylgeranyl diphosphate
IPP isopentenyl diphosphate
MEP methylerthritol 4-phosphate
MVA mevalonic acid
NCED 9-cis-epoxycarotenoid dioxygenase
NPQ non-photochemical quenching
NXS neoxanthin synthase
I. BIOLOGICAL FUNCTION

A. DIETARY CAROTENOIDS

Carotenoids are a vital component of mammalian diets, providing precursors for vitamin A biosynthesis. Antioxidants and their dietary uptake can pigment the tissues of animals such as fish, crustaceans and birds. Vitamin A (all-trans-retinol) is generated from unmodified β-ring containing provitamin A carotenoids in the diet (von Lintig, 2010), of which β-carotene (two nonhydroxylated β-ionone rings), is the most efficient, because it can generate up to two retinol molecules. α-carotene and β-cryptoxanthin also contain provitamin A potential, but only have a single nonhydroxylated β-ring (Davis et al., 2008).

Vitamin A deficiency is responsible for a number of disorders that range from impaired iron mobilization, growth retardation and blindness to a depressed immune response, as well as increased susceptibility to infectious disease (Sommer and Davidson, 2002). Between 140 and 250 million children are at risk of vitamin A deficiency (Underwood, 2004); 250,000–500,000 become blind every year and half will die within 12 months after losing their sight (http://www.who.int/nut/vad.htm). Simply improving the vitamin A status of children, by increasing the uptake of provitamin A (e.g. β- and α-carotene), can reduce overall child mortality by 25% (http://www.unicef.org/immunization/facts_vitamina.html).

Low serum levels of vitamin A (less than 0.7 μmol L⁻¹) can be used as a population-based indicator of health risks (Underwood, 2004). Recommended daily allowances for vitamin A range from 300–600 μg for children to 900–1300 μg for adults of retinol activity equivalents (retinol and provitamin A carotenoids; Fig. 1). There is no recommended daily allowance for provitamin A carotenoids, as the conversion efficiency remains imprecise; however, between 3 and 6 mg of β-carotene daily is sufficient to maintain healthy serum carotenoid levels, as would five or more servings of fruits and vegetables per day (Panel on Micronutrients, 2001).
Carotenoids play a variety of crucial roles in photosynthetic organisms. Carotenoids are involved in photosystem assembly where they contribute to harvesting light in a broader range of wavelengths in the blue region of the visible light spectrum and subsequently transfer the energy to chlorophyll (Fig. 2). The distinctive yellow colours of light-harvesting carotenoids become visible during autumn when chlorophyll degrades. The colour of carotenoids, typically ranging from pale yellow to red is defined by the number of conjugated double bonds along the C40 backbone as well as other structural and oxygenic modifications that impart different spectral properties. Carotenoids also provide protection from excessive light via...
energy dissipation and free radical detoxification, which limits damage to membranes and proteins (DellaPenna and Pogson, 2006).

Plants need to maintain a balance between absorbing sufficient light for photosynthetic processes and avoiding oxidative damage caused by high light. Complementary photoprotective mechanisms are employed to minimize photodamage induced by exposure to high light and these include (1) the harmless dissipation of excess energy via non-photochemical quenching (NPQ) that is mediated by certain xanthophylls (zeaxanthin, antheraxanthin and lutein), (2) quenching of triplet chlorophylls by carotenoids, (3) accumulation of antioxidants (ascorbate, tocopherols and carotenoids) and (4) activation of antioxidant enzymes such as ascorbate peroxidase that de-toxify free radicals, as well as repair damaged proteins (Bailey and Grossman, 2008; Niyogi, 1999).

The physiological relevance of xanthophylls is exemplified by the bleaching, delayed greening, viviparous and semi-lethal phenotypes observed in several carotenoid- and NPQ-deficient mutants (Neill et al., 1986; Niyogi et al., 1997; Pogson et al., 1998; Robertson et al., 1966; Treharne et al., 1966;
Alterations in the carotenoid pool size make the xanthophyll cycle affect plant fitness. Increasing the xanthophyll cycle pool by overexpressing the bacterial \(\beta OH \) gene (\(chyB \)) enhances stress tolerance in Arabidopsis (Johnson et al., 2008). Zeaxanthin prevents oxidative damage of the thylakoid membranes and plants with reduced zeaxanthin exhibit increased sensitivity to light stress (Havaux and Niyogi, 1999; Verhoeven et al., 2001). Conversely, a lycopene \(\beta \)-cyclase (\(\beta \)LCY) mutant that lacks zeaxanthin but accumulates additional lutein and \(\alpha \)-carotene (suppressor of zeaxanthin-less1, \(zsl1 \)) exhibits a partially restored quenching efficiency, suggesting that lutein may substitute for zeaxanthin (Li et al., 2009).

II. DISTRIBUTION

Carotenoids are synthesized by all photosynthetic organisms, some bacteria and fungi. Other organisms, such as humans, must acquire carotenoids through dietary intake. For instance, the commercially significant pigment astaxanthin is primarily synthesized by microorganisms, such as the green alga Haematococcus pluvialis and is accumulated by fish such as salmon, thus colouring their flesh red. In the case of lobster and other crustaceans, astaxanthin’s spectral properties are modified by the protein, crustacyanin, which results in blue pigmentation that shifts to red upon cooking, which causes protein-pigment denaturation (Britton et al., 1997). Flamingos can also make use of carotenoids cosmetically and when the birds applied canthaxanthin-rich secretions onto their feathers, their courting behaviour became more frequent during mating seasons due to a visually more attractive breeding partner (Amat et al., 2010). Humans have been using carotenoids and their derivatives, such as bixin, as food additives, as well as for cosmetic purposes (Bouvier et al., 2003a).

Curious exceptions to the lack of synthesis of carotenoids by animals include the synthesis of carotenoids in the human protist parasites, Plasmodium and Toxoplasma (Tonhosolo et al., 2009), which is explained by the existence of a remnant plastid, known as an apicoplast. An aphid genome was found to encode enzymes for carotenoid biosynthesis, which was the result of lateral gene transfer from a fungus, thus making aphids the only known animal to date capable of synthesizing their own carotenoids (Moran and Jarvik, 2010).

Carotenoid accumulation relies on the presence of structures capable of storing and retaining carotenoids. During the transformation of a chloroplast into a chromoplast, carotenoids become localized in plastoglobuli before incorporation into the chromoplast (Tevini and Steinmuller, 1985). Carotenoids within plastoglobuli exhibit much higher light stability than carotenoids within
chloroplast membranes, suggesting that pigments are better protected from light destruction in these structures (Merzlyak and Solovchenko, 2002). Cyanobacterial mutants with inactivated plastoglobulin-like genes are especially sensitive to altered light regimes, and the plastoglobulin-like peptides accumulate to a greater extent in wild-type cultures that are exposed to high light (Cunningham et al., 2010). Chromoplasts also accumulate carotenoids in lipoprotein structures (Bartley and Scolnik, 1995; Vishnevetsky et al., 1999) that are sequestered as crystals. For example, in a novel cauliflower mutant with orange curd, Or, β-carotene accumulates in the plastids of the pith and curd as sheets, ribbons and crystals (Li et al., 2001; Lu et al., 2006).

There are other plastid organelles capable of storing carotenoids. These include the ‘colourless’ amyloplasts, which store starch granules (Kirk and Tiliney-Bassett, 1978). Lutein is the predominant carotenoid present in many seed amyloplasts such as wheat (Hentschel et al., 2002; Howitt et al., 2009), whereas maize exhibits great diversity in terms of pigment composition (Harjes et al., 2008). Leucoplasts are characteristic of mature root cells and accumulate trace levels of neoxanthin and violaxanthin, which amount to only 0.03–0.07% of the levels in light-grown leaves (Parry and Horgan, 1992). Elaioplasts are specialized lipid-storing plastids and provide an ideal hydrophobic sink for accumulation of carotenoids. The dark-grown etioplast is distinguished by the prolamellar body, a uniformly curved lattice of tubular membranes, which contains several of the biochemical building blocks required for the chloroplast (Gunning and Jagoe, 1967) including the xanthophylls, lutein and violaxanthin (Joyard et al., 1998). The Arabidopsis crtiso (ccr2) mutant accumulates tetra-cis-lycopene and lacks a prolamellar body. Thus, a mutation in carotenoid biosynthesis apparently disrupts membrane curvature and stabilization of the prolamellar body (Park et al., 2002). The absence of this structure in CRTISO mutants suggests that different carotenoids either directly or indirectly impede formation of the membrane lattices, which results in a delay in plastid development and greening upon exposure to light. These data demonstrate an important role for carotenoids in plastid differentiation (Park et al., 2002).

III. CAROTENOID BIOSYNTHESIS

A. ISOPRENOID PRECURSORS

Isoprenoids (or terpenoids) are a large and diverse class of naturally occurring organic chemicals derived from five-carbon isoprene units. Carotenoids are derived from two isoprene isomers, isopentenyl diphosphate (IPP) and
dimethylallyl diphosphate (DMAPP). The same precursors are used to make a diverse range of compounds that include tocopherols, chlorophylls, phylloquinone, gibberellins, abscisic acid (ABA), monoterpenes and plastoquinone. The biosynthesis of isoprenoid precursors has been covered in detail elsewhere (Rodriguez-Concepcion, 2010).

Two distinct pathways exist for IPP production: the mevalonic acid (MVA) pathway and the mevalonate-independent, methylerythritol 4-phosphate (MEP) pathway (Lange et al., 2000). The plastid-localized MEP pathway combines glyceraldehyde-3-phosphate and pyruvate to form deoxy-d-xylulose 5-phosphate (DXP), a reaction catalysed by DXP synthase (DXS). A number of steps are then required to form geranylgeranyl diphosphate (GGPP), the precursor to carotenoid biosynthesis. The Arabidopsis Clal mutant, in which the DXS gene of the MEP pathway is disrupted, is photobleached because of the absence of protective carotenoids (Araki et al., 2000; Estevez et al., 2000). Conversely, overexpression of PSY (phytoene synthase) resulted in increased carotenoid accumulation and a concomitant accumulation of the DXS enzyme (Rodriguez-Villalon et al., 2009).

B. CAROTENE SYNTHESIS

1. Phytoene synthase
The first committed step is the condensation of two molecules of GGPP to produce phytoene (Fig. 3). This reaction is catalysed by PSY in higher plants and bacteria (CrtB; Armstrong, 1994). PSY is a single-copy gene in Arabidopsis but present in multiple copies in other plants such as rice, maize and cassava, all of which have three copies that are expressed in different tissues and show differential responses to environmental stimuli (Arango et al., 2010; Li et al., 2008a,b; Welsch et al., 2008). PSY is a rate-limiting step and a dosage effect of the maize Y1 allele was noted as early as 1940 (Randolph and Hand, 1940). Overexpression of an exogenous daffodil PSY in rice endosperm leads to phytoene accumulation, the first instance of carotenoid engineering in rice (Burkhardt et al., 1997).

2. Desaturases (PDS and ZDS)
Phytoene is produced as a 15-cis isomer, which is subsequently converted to all-trans isomer derivatives (Beyer et al., 1989; Chen et al., 2010). Two desaturases, phytoene desaturase (PDS) and \(\zeta \)-carotene desaturase (ZDS), catalyse a series of dehydrogenation reactions by introducing four double bonds to form lycopene. Desaturation is linked to a plastidic respiratory
Fig. 3. Carotenoid biosynthetic pathway in higher plants. The pathway shows the primary reactions found in nearly all plant species. Grey shaded areas on carotenoid structures indicate site of activity for each biosynthetic enzyme. ABA, abscisic acid; \(\beta \)LCY, lycopene \(\beta \)-cyclase; \(\beta \)OH, \(\beta \)-hydroxylase; CRTISO, carotenoid isomerase; \(\varepsilon \)LCY, lycopene \(\varepsilon \)-cyclase; \(\varepsilon \)OH, \(\varepsilon \)-hydroxylase; NCED, 9-\(cis \)-epoxycarotenoid dioxygenase; NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene synthase; VDE, violaxanthin de-epoxidase; ZDS, \(\zeta \)-carotene desaturase; ZEP, zeaxanthin epoxidase; Z-ISO, 15-\(cis \)-\(\zeta \)-carotene isomerase.
redox chain (Nievelstein et al., 1995) and evidence for a quinone requirement was demonstrated in daffodil and Arabidopsis (Beyer, 1989; Norris et al., 1995).

3. Isomerases (Z-ISO and CRTISO)
Recent biochemical evidence confirms that the desaturation reactions in plants proceed via various cis intermediates, including 9,15,9'-tri-cis-ζ-carotene, 9,9'-di-cis-ζ-carotene and 7,9,9'-tri-cis-neurosporene (Chen et al., 2010; Isaacson et al., 2004). Thus, all-trans-lycopene, the preferred substrate for the cyclases, is produced by the desaturases in concert with two isomerases. The first isomerase was identified in Arabidopsis and tomato (Isaacson et al., 2002; Park et al., 2002). Lesions in CRTISO result in accumulation of cis-carotene isomers in dark-grown plants (Park et al., 2002). Characterization of the maize recessive y9 mutant demonstrated that, like crtiso mutants, the phenotype could be rescued by light exposure, to form 9,9'-di-cis-zeta-carotene, the substrate for ZDS (Li et al., 2007). The Z-ISO gene was identified in both maize and Arabidopsis and found to be similar to NnrU (for nitrite and nitric oxide reductase U), which is required for bacterial denitrification, a pathway that produces nitrogen oxides as alternate electron acceptors for anaerobic growth. An Escherichia coli assay proved that Z-ISO was capable of 15-cis bond isomerization in 9,15,9'-tri-cis-ζ-carotene (Chen et al., 2010).

In the Arabidopsis CRTISO (ccr2) and Z-ISO mutants, cis intermediates are photoisomerized in the light, which raises questions about the necessity of carotenoid isomerases in plants and why there are four genes required for the synthesis of lycopene in plants but only one in bacteria. In chromoplasts, CRTISO activity is required for all-trans-lycopene accumulation, regardless of the light regime, because the tangerine mutant accumulates tetra-cis-lycopene in the light (Isaacson et al., 2002). Carotenoids are deposited in a crystalline form in tomato chromoplasts and these may be more resistant to photoisomerization. Further, although the biosynthetic pathway proceeds in chloroplasts, a delayed greening and substantial reduction in lutein occurs in mutants defective in CRTISO in Arabidopsis and some chlorosis occurs in rice and tomato leaves (Fang et al., 2008; Isaacson et al., 2002; Park et al., 2002). Thus, carotenoid synthesis in dark-grown tissues absolutely requires isomerase activity. Such tissues include the endosperm, a target for provitamin A carotenoid biofortification.

4. Cyclases
After lycopene, the carotenoid biosynthetic pathway divides into two branches, distinguished by different cyclic end groups, namely beta or epsilon. Two β-rings form the β,β branch (β-carotene and its derivatives) with
one β- and one ε- forming the β,ε branch (α-carotene and its derivatives). βLCY introduces a β-ionone ring to either end of all-trans-lycopene to produce β-carotene, whereas both the β-cyclase and ε-cyclase enzymes are required to form α-carotene (Cunningham and Gantt, 2001). Curiously, mutated maize endosperm tissue lacking βLCY activity was also found to accumulate lactucaxanthin (ε,ε-ring) and other unusual carotenoids, including δ-carotene, and ε-carotene. The ratio of βLCY:εLCY transcripts correlated with the accumulation of different cyclization products in embryo and endosperm tissues (Bai et al., 2009). εLCY expression is important in controlling pathway flux to carotenoids with higher provitamin A value and the breeding alleles that have been developed for breeding high-provitamin A maize (Harjes et al., 2008).

Other cyclase activities include the capsanthin–capsorubin synthase (CCS) (Lefebvre et al., 1998) in capsicum that cyclizes lycopene to produce the κ-cyclic carotenoids, capsanthin and capsorubin. CCS was found to contain a noncovalently bound flavin adenine dinucleotide (FAD), though it was only required for activity in the presence of NADPH, which functions as the FAD reductant. The CCS flavoproteins catalyse reactions with no net redox change as the reaction did not transfer hydrogen from the dinucleotide cofactors to β-carotene or capsanthin. Thus, FAD in its reduced form could be implicated in the stabilization of the carbocation intermediate (Mialoundama et al., 2010).

C. XANTHOPHYLL SYNTHESIS

Xanthophylls are oxygenated derivatives of carotenes and play important roles in photoprotection and light-harvesting antennae formation (Niyogi, 1999).

1. Hydroxylases

Nearly all xanthophylls in higher plants have hydroxyl moieties on the 3-carbon in the β- or α-carotene rings to form zeaxanthin and lutein, respectively. There are two distinct hydroxylation reactions of the ε- and β-rings, confirmed by the identification of the ε-hydroxylase (εOH) locus, lut1 (Pogson et al., 1996), and the β-hydroxylase (βOH) genes in higher plants (Sun et al., 1996). βOH enzymes are ferredoxin dependent and contain an iron-coordinating histidine cluster that is required for activity (Bouvier et al., 1998). In contrast, εOH is a plastid-targeted cytochrome P450-type monooxygenase with a distinctly different enzymatic mechanism from the βOhs (Tian et al., 2004).
βOH activity is an important provitamin A biofortification target, as hydroxylation or any other modification of β-ionone rings depletes vitamin A potential. Thus, reduced hydroxylase activity will result in fewer β-rings modifications, thereby maintaining β-carotene pool and maximum vitamin A potential. Of the six loci encoding this enzyme, one locus, HYD3, was found to be critical for maize endosperm β-carotene levels and alleles were identified in a population of 51 maize lines (Vallabhaneni et al., 2009) and further association and linkage population studies in maize found that this gene was indeed responsible for a QTL associated with β-carotene accumulation (Yan et al., 2010), and in combination with εLCY alleles (Harjes et al., 2008), it is now possible to use molecular markers to select for high-provitamin A carotenoid maize seeds.

2. Zeaxanthin epoxidase and violaxanthin de-epoxidase

An epoxide group is introduced into both rings of zeaxanthin by zeaxanthin epoxidase (ZEP) to form violaxanthin. Under high light stress, the reverse reaction is rapidly undertaken by the violaxanthin de-epoxidase (VDE; Yamamoto, 1979). Light is critical in modulating the interconversion of zeaxanthin and violaxanthin. Under normal light conditions, when the incident light can be safely utilized for photosynthetic electron transport, ZEP converts zeaxanthin to violaxanthin by introducing 5,6-epoxy groups to the 3-hydroxy-β-rings. However, when incident light is in excess, VDE converts a substantial pool of violaxanthin to zeaxanthin (Pfundel et al., 1994).

VDE is soluble and inactive at neutral pH, but following acidification (below pH 6.5) it attaches to the thylakoid membrane and its violaxanthin substrate (Hager and Holocher, 1994). The thylakoid membrane lipid monogalactosyldiacylglycerol is needed for optimal VDE activity when assayed in vitro and it requires ascorbate as a reductant (Schaller et al., 2010). Structural analyses revealed that at neutral pH, VDE is monomeric and its active site occluded within a lipocalin barrel, but acidification causes the barrel to open and the enzyme dimerizes. The carotenoid substrate could fit in a channel linking the two active sites of the dimer enabling de-epoxidation of both violaxanthin β-rings, thus forming zeaxanthin (Arnoux et al., 2009). Site-directed mutagenesis of amino acid residues lying in close contact with the two substrates supported the proposed substrate-binding sites and identified two residues, Asp-177 and Tyr-198, that are required for catalytic activity (Saga et al., 2010).

ZEP mutants, abal, are deficient in ABA and display a partially de-etiolated phenotype, including reduced hypocotyl growth, cotyledon expansion and the development of true leaves during late skotomorphogenic growth. However, other ABA-deficient mutants lack this phenotype and
ABA application did not rescue the skotomorphogenesis, though it could be phenocopied by the addition of fluridone, a carotenoid inhibitor that blocks PDS activity. Thus, ZEP appears to have a role in skotomorphogenic growth (Barrero et al., 2008).

3. Neoxanthin synthase
Conversion of violaxanthin to neoxanthin is performed by the enzyme neoxanthin synthase (NXS), which was unequivocally identified in a novel ABA-deficient Arabidopsis mutant, {\textit{aba4}}. The predicted gene product is a novel chloroplast membrane protein, and constitutive expression of {\textit{ABA4}} in Arabidopsis led to increased accumulation of trans-neoxanthin. Significantly reduced levels of ABA were synthesized in dehydrated {\textit{aba4}} mutants, demonstrating that ABA biosynthesis in response to stress must occur mainly via neoxanthin isomer precursors (North et al., 2007). Detached {\textit{aba4.1}} leaves were more sensitive to oxidative stress than the wild type and {\textit{aba4.1 npq1}} double mutants, lacking both zeaxanthin and neoxanthin, underwent stronger PSII photoinhibition (Dall'Osto et al., 2007).

D. CLEAVAGE PRODUCTS
Characterization of the carotenoid-cleavage gene family has yielded some interesting results in recent years. The enzyme products are varyingly referred to as carotenoid-cleavage dioxygenases (CCD) or 9-cis-epoxycarotenoid dioxygenases (NCED), reflecting the first characterized member of this gene family (Schwartz et al., 1997; Tan, 1997). The nine members of the gene family in Arabidopsis show different substrate specificity and tissue distribution (Schwartz et al., 2001, 2003; Tan et al., 2003). The CCD gene family is responsible for the formation of vitamin A, phytohormones (e.g. ABA and strigolactones), coloured spices (e.g. saffron and bixin) and novel signalling molecules as well as plant volatiles used in the perfume industry (Fig. 4).

1. Vitamin A
Vitamin A is a C_{20} cleavage product of carotenoids, which, in addition to its retinoid derivatives, is essential for animal survival and vitamin A biosynthesis has recently been reviewed in detail (von Lintig, 2010). Cleavage of \(\beta \)-carotene was postulated as an important step in the formation on vitamin A, but it was not until 2000 that a \(\beta \)-carotene 15,15\(^{\prime}\)-dioxygenase was cloned from {\textit{Drosophila melanogaster}} (von Lintig and Vogt, 2000) and chicken (Wyss et al., 2000). The deduced amino acid sequence showed homology to the maize carotenoid dioxygenase, VP14, involved in the synthesis of ABA.
Any carotenoid containing an unmodified β-ionone ring has provitamin A activity; thus, β-carotene is one of the most active because a single β-carotene molecule is cleaved to form two all-trans-retinal molecules, which are reduced to form all-trans-retinol (vitamin A). All retinoids are derived from this compound and maintain the characteristic β-ionone ring. Different end groups or β-ionone ring modifications characterize the various retinoids. For example, retinoic acid (or 11-cis-retinal), which is required for reproduction, embryonic development, cell differentiation, immunity and other biological processes, binds to opsin to provide a chromophore for the visual pigments that mediate phototransduction (von Lintig, 2010).

2. Phytohormones
The plant hormone ABA is primarily involved in plant stress responses, seed development and dormancy (Seo and Koshiba, 2002). ABA is a cleavage product of 9-cis-violaxanthin and/or 9′-cis-neoxanthin, an idea that was first proposed by Taylor and Smith (1967). Cleavage of 9′-cis-neoxanthin by
NCED produces xanthoxin and was first identified in the maize *viviparous14* (*vp14*) mutant (Schwartz et al., 1997; Tan, 1997). Xanthoxin is followed in the pathway by a number of further modified products that are required to produce ABA (Seo and Koshiba, 2002). For the ABA signal to be transmitted, it must first bind a receptor molecule. The putative identification of such receptors has been the topic of recent controversy, though the recent crystal structure of a PYR/PYL (pyrabactin resistance/pyrabactin resistance-like) or RCAR (regulatory component of ABA receptor) protein appears to resolve this question (Park et al., 2009). ABA-bound PYR/PYL/RCAR protein inhibits a phosphatase 2C that is known to participate in ABA signalling (Ma et al., 2009).

Strigolactones are carotenoid-derived terpenoid lactones that inhibit shoot branching and can be exuded from plant roots to recruit beneficial mycorrhizal fungi. This apocarotenoid signal has been hijacked by parasitic plant seeds to encourage germination (Dun et al., 2009; Matusova et al., 2005). Such a signal was initially proposed after novel *CCD* mutants were found to exhibit increased shoot branching in Arabidopsis *max4* and pea *rms1* mutants (Sorefan et al., 2003). MAX3 (*CCD7*) (Booker et al., 2004) and MAX4 (*CCD8*) can sequentially cleave β-carotene to form the C18 compound 13-apo-carotenone (Schwartz et al., 2004). The recent discovery that both rice and pea branching mutants were deficient in strigolactones resolved years of speculation about the nature of the branching signal. It has been shown that strigolactone application restores the wild-type branching phenotype in pea *CCD8* mutants, confirming that strigolactones are necessary and sufficient to inhibit shoot branching in plants. Further, the *CCD8* mutants exhibited additional typical strigolactone-deficient phenotypes including alterations to mycorrhizal symbiosis and parasitic weed interaction (Gomez-Roldan et al., 2008). Concurrent studies confirmed that synthetic strigolactone application inhibits tillering in rice *D10* (*CCD8*) and *D17* (*CCD7*) mutants as well as rescuing the equivalent Arabidopsis mutants. An elegant indirect assay confirmed that these mutants were deficient in strigolactone synthesis, as root exudates did not stimulate germination of parasitic *Striga* seeds to the same extent as wild-type exudates (Umehara et al., 2008). The *CCD7* knockdown in tomato exhibited increased branching, but a metabolic screen did not identify any significant changes in root carotenoid substrate. However, C13 cyclohexenone and C14 mycorradicin apocarotenoids were reduced in response to mycorrhizal colonization, indicating that *CCD7* is required for arbuscular mycorrhiza-induced apocarotenoid synthesis (Vogel et al., 2010).

Other components of the strigolactone biosynthetic pathway have been identified, including *MAX1*, which encodes a cytochrome p450 that modifies
an apocarotenoid product of the CCD7 and CCD8 cleavage reactions to produce another mobile intermediate (Booker et al., 2005). MAX2/RMS4/D3 encode F-box proteins and the mutants are not rescued by exogenous strigolactones and are thus predicted to have a role in signalling via ubiquitin-mediated protein degradation (Beveridge et al., 1996; Stirnberg et al., 2002). Additional steps have been identified in rice, including another high-tillering rice mutant, d27, which does not exude strigolactones. D27 is chloroplast localized, though its enzymatic activity has not been described. Crosses with d10 (CCD8) are not additive and the d27 mutant can be rescued by strigolactone application, thus is thought to be required for the biosynthesis of strigolactones (Lin et al., 2009). The D14 gene encodes a α/β-fold hydrolase, and the d14 mutant is strigolactone insensitive, but exhibits increased tillering and does not show an additive phenotype when crossed with d10 (Arite et al., 2009). Characterization of this curious mutant could provide insights into strigolactone signalling or have a role in producing a bioactive strigolactone-derived hormone.

Strigolactone and ABA composition were analysed in plants treated with inhibitors of specific carotenoid-cleavage enzymes. Strigolactone content was reduced in plants treated with the CCD inhibitor, D2, but root ABA levels were maintained. Conversely, plants with genetically or chemically inhibited ABA biosynthesis also had reduced strigolactones and a concomitant reduction in CCD7 and CCD8 transcript abundance, implying a potential cross-talk role for ABA in the regulation of strigolactone biosynthesis (Lopez-Raez et al., 2010). Finally, strigolactone biosynthesis and the concomitant branching phenotype are responsive to phosphate deficiency in Arabidopsis (Kohlen et al., 2010). The role of strigolactones in controlling plant morphology and response to the environment has become an exciting area of active research.

3. Bixin, saffron and plant volatiles
Carotenoid cleavage metabolites are vital for plants and animals. They are also highly prized in the food and cosmetic industries. Bixin (annatto) is a red-coloured, di-carboxylic monomethyl ester apocarotenoid, traditionally derived from the plant *Bixa orellana*. Bouvier and colleagues identified a lycopene cleavage dioxygenase, bixin aldehyde dehydrogenase and norbixin carboxyl methyltransferase that are required to produce bixin from lycopene. Co-transforming the appropriate constructs into *E. coli*, engineered to produce lycopene, resulted in bixin production at a level of 5 mg g⁻¹ dry weight (Bouvier et al., 2003a).

Saffron, another commercially important coloured compound, can attribute the majority of its characteristic colour, flavour and aroma to the
accumulation of carotenoid derivatives. A crocus (Crocus sativus) zeaxanthin 7,8(7',8')-cleavage dioxygenase (CsZCD) was cloned and found to be targeted to the chromoplast and initiated the production of the cleavage products. Another enzyme, 9,10(9',10')-cleavage dioxygenase was also cloned and found to be a less specific cleavage enzyme (Bouvier et al., 2003b).

Beta-ionone is the predominant norisoprenoid volatile in the mature stigma tissue. Four CCD genes were isolated from crocus that were capable of cleaving β-carotene at the 9,10(9',10') positions to yield β-ionone, though with different expression patterns indicative of sub-functionalization (Rubio et al., 2008). Differential expression was also observed for βLCY genes, CstLcyB1 and CstLcyB2a. The CstLcyB2a is chromoplast specific and conspicuously absent in crocus species with low apocarotenoid content, suggesting that it encodes an important step in determining the accumulation of β-carotene substrate that is required to produce the distinctive saffron apocarotenoids (Ahrazem et al., 2010).

4. Novel-signalling molecules
A putative novel signal has been observed in Arabidopsis bps1 mutants, which are developmentally defective but the shoot can be rescued if the roots are removed or carotenoid biosynthesis is chemically blocked with norflurazon. It is hypothesized that an unknown substance moves constitutively from the root to the shoot to arrest growth, and this is supported by experiments demonstrating that mutant roots are sufficient to arrest wild-type shoot development (Van Norman et al., 2004). BYPASS1 encodes a novel protein of unknown function that is widespread in plant genomes (Sieburth and Lee, 2010), though the tobacco homologue contains a transmembrane domain and GFP fusion proteins were endoplasmic reticulum associated (Kang et al., 2008). It is likely that more novel carotenoid-derived signalling molecules remain to be identified.

IV. REGULATION OF CAROTENOID BIOSYNTHESIS

A. TRANSCRIPTIONAL REGULATION
Carotenoid composition is responsive to environmental stimuli, oxidative stress, redox poise and metabolite feedback regulation. In general, increases in carotenoid accumulation, be it during fruit ripening, flower development or production of stress-induced carotenoids in algae, coincide with increased transcript abundance of some key (but not all) steps in the pathway.
Phytoene biosynthesis is a rate-limiting step in carotenogenesis and transcript abundance can dramatically alter carotenoid pool size, thus making PSY a logical target in the study of carotenoid regulation. Changes in transcript abundance are particularly evident during morphogenic changes from etioplast to chloroplast or chloroplast to chromoplast. PSY transcript abundance is upregulated during photomorphogenesis via a phytochrome-mediated (red-light) pathway, a response that is abolished in the phyA mutant (Welsch et al., 2000, 2008). Phytochrome-mediated light signals regulate carotenoid biosynthesis in plants by way of phytochrome-interacting factor 1 (PIF1), which directly binds to the PSY promoter, thus repressing PSY expression. Light-triggered degradation of PIFs by photoactivated phytochromes during deetiolation permits PSY expression, which enables rapid production of carotenoids (Toledo-Ortiz et al., 2010).

Further evidence that PSY controls metabolic flux was obtained by paclobutrazol treatment, which inhibits gibberellin synthesis and enables deetiolation despite the absence of light. PSY activity and carotenoid levels increased in the dark following treatment with paclobutrazol, and this increase was supported by feedback regulation of DXS protein abundance. Overexpression of DXS alone in etiolated tissue did not increase carotenoid accumulation; however, PSY overexpression resulted in increased carotenoid accumulation and a concomitant post-transcriptional accumulation of DXS (Rodriguez-Villalon et al., 2009).

PSY is present as a single copy in Arabidopsis, but additional homologues have been identified in tomato, poplar and cereal crops such as rice, wheat and maize (Chaudhary et al., 2010; Howitt et al., 2009; Li et al., 2008a,b; Welsch et al., 2008). PSY homologues respond differently to abiotic stimuli and have unique tissue specificities though their function remains redundant. For example, salt and drought induce PSY3 transcript abundance in maize roots, which correlated with increased carotenoid flux and ABA in maize roots (Li et al., 2008a). Rapid disappearance of PSY2 and PSY3 mRNA after rewatering suggests mRNA instability or strict control of transcription (Li et al., 2008a). Similar responses were observed in rice PSY homologues (Welsch et al., 2008). Cassava also has three sub-functionalized PSY genes; however, it was not PSY3, but a PSY1 paralogue that responded to abiotic stress (Arango et al., 2010). Perhaps the most dramatic enhancement of carotenoid accumulation has been achieved in the oil seeds of canola (Brassica napus) and Arabidopsis, where overexpression of PSY in seeds resulted in a 43- to 50-fold increase in total carotenoid content (Lindgren et al., 2003; Shewmaker et al., 1999). PSY overexpression in Arabidopsis seedlings did not alter carotenoid content. However, non-photosynthetic calli and roots overexpressing PSY accumulated 10- to 100-fold more carotenoids than...
corresponding wild-type tissues, predominantly β-carotene and its derivatives, which were deposited as crystals. Similarly, overexpression of the bacterial PSY, crtB, in white carrot roots also initiated carotenoid crystal formation (Maass et al., 2009).

The complexity of carotenoid regulation is further demonstrated by the analysis of the PSY promoter where a cis-acting motif (ATCTA) was identified to be involved in mediating the transcriptional regulation of photosynthetic genes, including PSY (Welsch et al., 2003). Manipulation of RAP2.2, APETALA2 transcription factors that bind to the PSY promoter, resulted in only minor carotenoid alterations in root calli (Welsch et al., 2007).

The relative activities of the εLCY and βLCY at the branch point of the pathway have a major regulatory role in modulating the ratio of lutein to that of the β-branch carotenoids (Cuttriss et al., 2007). CRTISO is a major regulatory node at the branch point of the biosynthetic pathway (Cazzonelli et al., 2009; Isaacson et al., 2004). A chromatin-modifying histone methyltransferase enzyme (SET DOMAIN GROUP 8, SDG8) has been shown to be necessary for maintaining CRTISO gene expression (Cazzonelli et al., 2009). The CRTISO and SDG8 promoters show overlapping patterns of expression specifically in the shoot apical meristem and pollen, which are active sites of cell division and epigenetic programming (Cazzonelli and Pogson, 2010). The absence of SDG8 reduces CRTISO transcript abundance, thereby altering carotenoid flux through the pathway, which might potentially impair strigolactone biosynthesis. This was the first report implicating epigenetic regulatory mechanisms in the control of carotenoid composition (Cazzonelli et al., 2009).

Allelic variation is another important source of carotenoid regulation. For example, alternative splicing of the PSY-A1 allele altered the relative abundance of functional PSY transcript and appeared to be a major QTL determinant of flour colour in bread wheat (Howitt et al., 2009). This was reiterated by a detailed analysis of natural genetic variation in maize. Association analysis, linkage mapping, expression analysis and mutagenesis confirmed that variation at the εLCY locus altered flux partitioning. Four polymorphisms controlled 58% of the variation between α- and β-branch accumulation, thus enabling the selection of alleles that confer high-provitamin A status for improved maize varieties (Harjes et al., 2008). Natural variation in βOH activity also has a significant impact on carotenoid composition (Vallabhaneni et al., 2009; Yan et al., 2010). Multiple control points both within the carotenoid pathway and MEP precursor pathway were identified in maize, and the timing of gene expression was found to be critical in determining carotenoid composition (Vallabhaneni and Wurtzel, 2009).
B. METABOLITE FEEDBACK

Feedback regulation by ABA increases PSY3 gene expression in rice and plays a critical role in the formation of a positive feedback loop that mediates abiotic stress-induced ABA formation (Welsch et al., 2008). The βLCY gene from the eubacterium Erwinia herbicola and daffodil (Narcissus pseudonarcissus) flowers were introduced into the tomato plastid genome resulting in increased accumulation of xanthophyll cycle pigments in leaves and β-carotene in fruits. Surprisingly, transplastomic tomatoes showed > 50% increase in total carotenoid accumulation (Apel and Bock, 2009), which may be due to a carotenoid product or intermediate feedback.

Lutein levels are altered when the higher plant desaturases and isomerases are bypassed, and thus cis-carotene intermediates are not produced (Misawa et al., 1994). Similarly, the absence of CRTISO or specific carotene isomers results in less lutein (Isaacson et al., 2002; Park et al., 2002). The mechanism of this flux partitioning is unclear, though flux through the two branches can be determined by εLCY mRNA levels (Cuttriss et al., 2007; Harjes et al., 2008; Pogson et al., 1996; Pogson and Rissler, 2000) and recent experiments indicate that both CRTISO (ccr2) and SDG8 (ccr1) mutants have aberrant εLCY transcript levels. It is thus possible that feedback may account for at least part of the reduction in lutein (Cazzonelli et al., 2009; Cuttriss et al., 2007).

C. CATABOLISM

Accumulation of carotenoids in photosynthetic tissue requires a balance between their rate of synthesis and catabolism. Recent 14CO2 uptake data demonstrates that synthesis, and by inference, turnover, is much more rapid than expected (Beisel et al., 2010). The incorporation of 14C into different carotenoids was not uniform and varied between mutants and under high light (Beisel et al., 2010), implying active degradation both enzymatically and by oxidative damage.

Studies in Arabidopsis, strawberry (Fragaria ananassa) and chrysanthemum (Chrysanthemum morifolium) petals have all demonstrated that the pool of carotenoids is determined in part by CCD catalysed degradation (Auldridge et al., 2006; Garcia-Limones et al., 2008; Ohmiya et al., 2006). In Arabidopsis seeds, loss of CCD function leads to significantly higher carotenoid levels (Auldridge et al., 2006).

CCD1 expression levels in strawberry correlate with ripening and a decrease in lutein content, which suggests that lutein could constitute the main natural substrate of FaCCD1 activity (Garcia-Limones et al., 2008). High
expression of CCD1 associated with certain maize alleles was correlated with low carotenoid levels in maize endosperm (Vallabhaneni et al., 2010). Petal colour in chrysanthemums is also regulated by CCD activity; white petals contain elevated transcript levels of CmCCD4a, which catabolizes the yellow carotenoid pigments (Ohmiya et al., 2006). Curiously, when CCD1 was overexpressed in high carotenoid golden rice lines (GR2), there appeared to be little impact on carotenoid levels in the endosperm. In fact, a similar carotenoid content was observed in both GR2 and antisense lines. Surprisingly, in vitro analyses suggested that apocarotenoids were the primary substrates of OsCCD1 (Ilg et al., 2010).

D. STORAGE CAPACITY

Carotenoid biosynthesis appears to take place largely at the chloroplast envelope and, in some cases, the thylakoid membrane (Joyard et al., 2009). Storage capacity is a major determinant of carotenoid pool size; the high pigment2 (hp2) tomato mutant (DEETIOLATED1, a negative regulator of light signalling) has a larger plastid and thus increased pigmentation (Kolotilin et al., 2007). Similarly, the hp3 tomato mutant (ZE) revealed an ABA deficiency, an enlarged plastid compartment and 30% more carotenoids in mature fruit (Galpaz et al., 2008). Plastid differentiation is an important mechanism in determining storage capacity, as demonstrated by the cauliflower (Brassica oleracea) Orange (Or) gene that creates a metabolic sink to accumulate β-carotene in the chromoplast (Li et al., 2001; Li and Van Eck, 2007; Lu et al., 2006). During the chloroplast to chromoplast transformation process, carotenoids become localized in plastoglobuli (Steinmuller and Tevini, 1985). Carotenoids within plastoglobuli exhibit much higher light stability than carotenoids within chloroplast membranes (Merzlyak and Solovchenko, 2002).

V. NUTRITION

A. RICE

Golden rice (Oryza sativa) was developed to alleviate vitamin A deficiency as this important staple crop does not typically accumulate any carotenoids in edible endosperm tissue. Daffodil PSY and bacterial desaturases (crtI, Erwinia uredovora) were targeted to endosperm tissue, where they produced up to 1.6 μg g⁻¹ carotenoids, predominantly β-carotene due to endogenous cyclase activity (Ye et al., 2000). A second generation line ‘Golden Rice 2’ overcame
a metabolic bottleneck by incorporating a more active PSY gene from maize, which substantially improved carotenoid biosynthesis, with some lines accumulating up to 37 μg g⁻¹ (Paine et al., 2005). More recent work has focused on transgene stability and the transformation of high-yielding cultivars (Datta et al., 2006, 2007). A dietary study of Golden Rice confirmed that deuterium-labelled [²H]β-carotene produced by these plants could be converted to retinol and is thus an effective biofortification strategy (Tang et al., 2009).

B. MAIZE

Zea mays is an essential staple cereal crop that naturally accumulates provitamin A carotenoids in the endosperm of the seed. There are vast diverse collections from which to source favourable alleles for plant breeding programmes. Such collections have been extensively utilized to identify important regulatory points in determining provitamin A potential. A significant QTL analysis determined that *PSY1* was responsible for 6.6–27.2% of phenotypic variation in carotenoid content (Chander et al., 2008). Genetic variation in *εLCY* was responsible for 58% of the variation in flux between the two branches of the pathway and is critical for driving provitamin A levels (Harjes et al., 2008). Two recent studies identified different βOH alleles of one locus that were important in determining the extent of β-ionone ring hydroxylation, and thus loss of provitamin A activity (Vallabhaneni et al., 2009; Yan et al., 2010). The most favourable alleles were found in temperate varieties and will be bred into tropical maize germplasm to help alleviate vitamin A deficiency in third world countries (Yan et al., 2010). Recent studies also identified additional control points that offer future possibilities for further enhancing carotenoid levels in maize (Vallabhaneni et al., 2010; Vallabhaneni and Wurtzel, 2009). Transgenic approaches to maize biofortification have also played a significant role in modifying β-carotene content (Aluru et al., 2008; Zhu et al., 2008) and laid the foundation for targeting alternative approaches. Analyses of tropical varieties (Menkir et al., 2008) and sweet corn (Fanning et al., 2010) have identified further diversity for carotenoid enhancement projects.

C. WHEAT

Triticum spp. endosperm colour is an important agronomic trait and thus has been the focus of several QTL studies. Lutein is the predominant carotenoid in wheat endosperm tissue and is frequently heavily esterified (Atienza et al., 2007; Howitt et al., 2009). A targeted molecular marker was developed for...
the *PSY1* gene on wheat chromosome 7A, and found to co-segregate with yellow pigmentation in a collection of Chinese wheat cultivars (He et al., 2008). Further, the total carotenoid pool size was found to be modulated by ε*LCY* alleles and/or *PSY-A1* spice variants (Howitt et al., 2009). Transgenic wheat expressing endosperm-specific PSY1 from maize and bacterial CRTI (desaturases) produced a 10.8-fold increase (up to 4.96 μg g⁻¹ dry weight) in total seed carotenoid content (Cong et al., 2009). Thus, both targeted breeding and transgenic approaches are likely to improve wheat lutein content, which is correlated with protection against age-related macular degeneration (AMD) of the eye—the leading cause of blindness in the developed world. Whether such strategies can increase provitamin A levels in wheat has not been reported thus far.

D. CASSAVA

Manihot esculenta is an important staple crop, especially in arid regions such as sub-Saharan Africa, though it is nutrient poor and typically accumulates very little provitamin A. Analysis of diversity collections identified landraces that accumulate lycopene (5 mg kg⁻¹) or β-carotene (4 mg kg⁻¹) (Nassar et al., 2007) and such variation was harnessed to identify natural *PSY* alleles that altered metabolic flux (Welsch et al., 2010). Cassava has three *PSY* genes, one of which (*PSY1*) responded strongly to abiotic stress (Arango et al., 2010). A single nucleotide polymorphism in *PSY2* was found to co-segregate with yellow-rooted cultivars in a breeding population that accumulated between 6.0 and 11.5 μg g⁻¹ carotenoids in fresh tissue. This genetic variant was used to successfully produce transgenic cassava with increased carotenoid accumulation in the roots (Welsch et al., 2010). Bioavailability of β-carotene in cassava was analysed and found to be as efficacious as β-carotene supplementation; thus, biofortification of cassava is a valid approach to alleviating vitamin A deficiencies (Howe et al., 2009)

E. SORGHUM

Sorghum bicolor is a major staple crop grown in semiarid regions due to its drought tolerance, which makes it a good candidate for biofortification. Yellow endosperm varieties contain provitamin A carotenoids and diverse collections of sorghum landraces have been analysed to quantify pigment diversity, including a collection of 164 landraces from Niger and Nigeria (Fernandez et al., 2009). Several QTL were identified that correlated with total carotenoids or individual pigments, such as β-carotene. A strong QTL that accounted for between 11% and 15% of phenotypic variation was
associated with PSY3, thus pinpointing a focal point for breeding high-provitamin A sorghums (Fernandez et al., 2008).

F. BANANA AND PLANTAIN

Banana and plantain (Musa spp.) are tropical crops and some of the most highly consumed fruits in the world. They have a high genetic diversity, as exemplified by the Embrapa international germplasm collection of more than 400 accessions, including wild diploids, triploids and tetraploids; however, they are not readily bred. Analysis of pigment composition identified 42 high pigment lines that accumulate between 1.06 and 19.24 \(\mu g \) of total carotenoids. Genetic variability was estimated using Diversity Arrays Technology molecular markers to establish a biofortification programme (Amorim et al., 2009). A similar study identified broad pigment diversity but limited accumulation of mineral micronutrients in a 171 genotype collection (Davey et al., 2009).

G. SWEET POTATO

Proof of the biofortification principle was established in Kenya where consumption of the orange-fleshed sweet potato (Ipomoea batatas) increased the vitamin A status of women and children (Hagenimana et al., 1999). A similar study in South Africa demonstrated a reduction in vitamin A deficiency of children (van Jaarsveld et al., 2005). However, analysis of carotenoid degradation in stored sweet potato, which is typically dried and stored for months, indicated losses of around 70% of the total carotenoid pool after 4 months’ storage in Uganda. This demonstrates the necessity for establishing diversity in carotenoid-rich agricultural products and underlines the difficulty in maintaining provitamin A intake outside of the growing season (Bechoff et al., 2010).

H. POTATO

Another staple food crop with limited micronutrient content is potato (Solanum tuberosum). Potato has been successfully fortified to produce provitamin A carotenoids. Overexpression of three bacterial genes for \(\beta \)-carotene synthesis (CrtB, CrtI and CrtY, encoding PSY, PDS and \(\beta \)LCY, respectively) from Erwinia were targeted to the tuber. The transgenic lines accumulated up to 47 \(\mu g \) \(\beta \)-carotene (Diretto et al., 2007). Detailed transcript analyses of lines carrying various combinations of transgenes found that \(\beta \)-cyclase had the greatest impact on regulating the amount of carotenoid accumulation (Diretto et al., 2010).
VI. CONCLUSIONS

The essential roles that carotenoids play in human health, as well as plant photosynthesis, photoprotection and reproduction, make them obvious candidates for enhancement and manipulation. To this end, molecular genetics, in concert with classical biochemistry, has facilitated an advanced understanding of the biosynthetic pathway. Breakthroughs in understanding the regulation of carotenoid accumulation are paving the way for improving the provitamin A content of staple food crops that would otherwise be of low nutritional value. This is of utmost importance for developing countries, where food storage is a problem and effective agriculture practices are still being developed. Further characterisation of regulatory processes that determine carotenoid accumulation, composition and storage capacity, as well as developing new transgenic technologies and breeding varieties, will all continue to strengthen biofortification projects in diverse crop species.

ACKNOWLEDGEMENTS

The authors acknowledge the support of Professor David Christopher, the New Zealand Foundation for Research Science and Technology to A. J. C.; funding from the United States National Institutes of Health (GM081160) and New York State to E. T. W. and A. J. C; and the Australian Research Council Centre of Excellence in Plant Energy Biology (CE0561495) to C. I. C. and B. J. P.

REFERENCES

are associated with lutein accumulation in wheat endosperm. Functional & Integrative Genomics 9, 363–376.

